Gas Boiler Controls
Wiring & Application Guide

Featuring Burnham® Brand IQ Boiler Control
and Intelligent Hydronic Control Systems

IQ
boiler control

Intelligent
Hydronic Control

ES2™
ESC™
Series 3™
Series 2™

©2013 U.S. Boiler Company
Table of Contents

1.0 Introduction

2.0 IQ Gas Boiler Control System

2.1 Single Zone Heating ... 4
2.2 Single Zone Heating, Power Stealing Thermostat 5
2.3 Single Zone Heating, IWH w/TPI Control 6
2.4 Single Zone Heating, IWH w/Aquastat Control 7
2.5 Two Zone Heating .. 8
2.6 Zone Valves Heating .. 9
2.7 Zone Valves Heating, IWH w/TPI Control, 2 Circulators 10
2.8 Zone Valves Heating, IWH w/Aquastat Control, 2 Circulators .. 11
2.9 Zone Valves Heating, IWH w/TPI Control, 1 Circulators, No Priority 12
2.10 Zone Valves Heating, IWH w/Aquastat Control, 1 Circulators, No Priority 13
2.11 Zone Valve Control Heating, IWH w/TPI Control, 2 Circulator 14
2.12 Zone Valve Control Heating, IWH w/Aquastat Control, 2 Circulator 15
2.13 Zone Valve Control Heating, IWH w/TPI Control, 1 Circulator 16
2.14 Zone Valve Control Heating, IWH w/Aquastat Control, 1 Circulator 17
2.15 Zone Switching Relay Heating .. 18
2.16 Zone Switching Relay Heating, IWH w/TPI Control 19
2.17 Zone Switching Relay Heating, IWH w/Aquastat Control 20

3.0 IQ Gas Boiler Control System, Outdoor Reset Card

3.1 Single Zone Heating .. 22
3.2 Single Zone Heating, IWH w/TPI Control 23
3.3 Single Zone Heating, IWH w/Aquastat Control 24
3.4 Zone Valves Heating, IWH w/TPI Control, 2 Circulators 25
3.5 Zone Valves Heating, IWH w/Aquastat Control, 2 Circulators .. 26
3.6 Zone Valves Heating, IWH w/TPI Control, 1 Circulators, No Priority 27
3.7 Zone Valves Heating, IWH w/Aquastat Control, 1 Circulators, No Priority 28
3.8 Zone Valve Control Heating, IWH w/TPI Control, 2 Circulator 29
3.9 Zone Valve Control Heating, IWH w/Aquastat Control, 2 Circulator 30
3.10 Zone Valve Control Heating, IWH w/TPI Control, 1 Circulator 31
3.11 Zone Valve Control Heating, IWH w/Aquastat Control, 1 Circulator 32
3.12 Zone Switching Relay Heating, IWH w/TPI Control 33
3.13 Zone Switching Relay Heating, IWH w/Aquastat Control 34

4.0 Intelligent Hydronic Control (IHC) Series 2 & PVG Boilers Only

4.1 Single Zone Heating .. 35
4.2 Single Zone Heating, Power Stealing Thermostat 36
4.3 Single Zone Heating, Indirect Water Heater (IWH) w/TPI Control 37
4.4 Single Zone Heating, IWH w/Aquastat Control 38
4.5 Two Zones Heating ... 39
4.6 Zone Valves Heating ... 40
4.7 Zone Valves Heating, IWH w/TPI Control, 2 Circulators 41
4.8 Zone Valves Heating, IWH w/Aquastat Control, 2 Circulators .. 42
4.9 Zone Valves Heating, IWH w/TPI Control, 1 Circulators, No Priority 43
4.10 Zone Valves Heating, IWH w/Aquastat Control, 1 Circulators, No Priority 44
4.11 Zone Valve Control Heating, IWH w/TPI Control, 2 Circulator 45
4.12 Zone Valve Control Heating, IWH w/Aquastat Control, 2 Circulator 46
4.13 Zone Valve Control Heating, IWH w/TPI Control, 1 Circulator 47
4.14 Zone Valve Control Heating, IWH w/Aquastat Control, 1 Circulator 48
4.15 Zone Switching Relay Heating .. 49
4.16 Zone Switching Relay Heating, IWH w/TPI Control 50
4.17 Zone Switching Relay Heating, IWH w/Aquastat Control 51
1.0 Introduction

Intelligent Hydronic Control and IQ Control Systems included on various Burnham Brand boilers contain features and capabilities, which can improve heating system operation, reduce fuel costs, improve comfort, and efficiency. By including unique capabilities, Burnham brand boilers can do more, with less field wiring, and fewer aftermarket controls and components – improving the operation of both new and replacement boiler installations.

These application drawings include detailed wiring diagrams, and set-up details, allowing installers to fully utilize the capability and versatility of the control systems. These applications can save installers time and money on just about any heating system – whether it’s a new installation, or replacing an older, less efficient boiler.

Notice:
While this manual contains wiring diagrams and set-up details, the Installation Operating and Service Instruction’s provided with each Burnham brand boiler must be followed.

Notice:
Install wiring and electrically ground boiler in accordance with requirements of the authority having jurisdiction, or in absence of such requirements the National Electrical Code, ANSI/NFPA 70, and/or the CSA C22.1 Electric Code.

Using this Guide

Line Voltage

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHC</td>
<td>Intelligent Hydronic Control</td>
</tr>
<tr>
<td>OCP</td>
<td>IQ Option Panel</td>
</tr>
<tr>
<td>TPI</td>
<td>Alliance IWH control</td>
</tr>
<tr>
<td>IQ</td>
<td>(Gas Boiler System) Combination of IHC and OCP on the boiler</td>
</tr>
<tr>
<td>“T-T”</td>
<td>Thermostat connection terminals</td>
</tr>
</tbody>
</table>

Low Voltage

Polarity Important
Red 24 Vac Hot
White (Grey) 24Vac Ground

Polarity Not Important
Blue wires
2.0 IQ Gas Boiler Control System

The Burnham ES2, ESC & Series 3 boilers feature Burnham’s IQ gas Boiler Control system, which greatly simplifies installation and set-up in both existing and new heating systems. The IQ Control system contains many unique features and capabilities that save the installer time and take the mystery out of controls by providing simple, clear information about settings, status, and diagnostics on an LED display on the boiler. The IQ gas Boiler Control System consists of the following components:

Intelligent Hydronic Gas Boiler Control features an integrated boiler temperature sensor, and ignition control into one for seamless operation. The Intelligent Hydronic Control features an LED read-out, which displays operating information such as boiler status and boiler water temperature. The Intelligent Hydronic Control also displays diagnostic info such as run time hours, the number of heating cycles, flame signal strength, and error codes for improved diagnostics.

The IQ Option Panel is a separate control panel that accepts IQ Option Cards for added efficiency and safety. IQ Option Cards snap into any one of the three Slots in the Option Panel, and are instantly recognized when the IQ System is powered up. A separate LED display provides setting, status, & diagnostic info for each of the IQ Option Cards, greatly simplifying the set-up and operation of the control. IQ Option Cards are cost effective, they save time, and they are functionally superior to stand alone Limits, LWCO’s and Outdoor Reset controls. Not available with the Series 2 Boiler.

IQ Option Cards are snap-in control modules which attach to the Option Panel, and contain various control upgrades, such as Auxiliary High Temperature Limit, Low Water Cut-Off protection, and Outdoor Air Reset. There’s an IQ Option Card for each feature. Option Cards simply plug into the Option Panel, and feature a one or two wire connection to a sensor. Not available with the Series 2 boiler.

Intelligent Hydronic Control Adjustment Mode Options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Parameter Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL</td>
<td>140°F – 220°F</td>
<td>High Limit Setting</td>
<td>180°F</td>
</tr>
<tr>
<td>dF</td>
<td>10°F – 30°F</td>
<td>High Limit Differential</td>
<td>15°F</td>
</tr>
<tr>
<td>Dr</td>
<td>0 – 20 Minutes</td>
<td>Circulator Overrun Time</td>
<td>0 Minutes</td>
</tr>
<tr>
<td>PP</td>
<td>2 – 20 Minutes</td>
<td>Circulator Pre-purge Time</td>
<td>2 Minutes</td>
</tr>
<tr>
<td>St</td>
<td>140°F – 180°F</td>
<td>Start Temperature</td>
<td>140°F</td>
</tr>
<tr>
<td>Pt</td>
<td>On – Off</td>
<td>Priority Time (DHW)</td>
<td>On</td>
</tr>
<tr>
<td>dh</td>
<td>Dh or TT2</td>
<td>DH Terminal Function</td>
<td>dh</td>
</tr>
<tr>
<td>F-C</td>
<td>F or C</td>
<td>Degrees F or C</td>
<td>F</td>
</tr>
</tbody>
</table>

The Intelligent Hydronic Control’s (IHC) “dh” parameter provides the ability to control the two separate heating demands or a heating demand and an Indirect Water Heater (IWH) demand without the use of additional controls.
2.1 Single Zone Heating

Explanation:
This arrangement can be used when an IQ gas boiler is connected to a single zone heating system.
• A thermostat wired to the OCP “TT” terminals provide a heating demand and energizes the yellow system wire.
2.2 Single Heat Zone, Power Stealing Thermostat

Explanation:
This arrangement can be used with a single zone heating system with a power stealing thermostat

- A thermostat wired to the OCP “TT” terminals provide a heating demand and energizes the yellow system circulator wire.
2.0 IQ Gas Boiler Control System

2.3 Single Heat Zone Heating, IWH w/TPI Control

Explanation:
This arrangement can be used with a single heat zone and DHW demand from the TPI control.

- A thermostat wired to the OCP “TT” terminals provides a heating demand and energizes the yellow system circulator wire. The TPI control wired to the IHC “1” & “2” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh” and when the “Pt” Priority Time parameter is set to “on”, it will prioritize the IWH without an timeout period.
- **CAUTION:** Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP and TPI controls.
2.4 Single Heat Zone Heating, IWH w/Aquastat Control

Explanation:
This arrangement can be used with a single heat zone and DHW demand from an Aquastat.

- A thermostat wired to the OCP “TT” terminals provide a heating demand and energizes the yellow system circulator wire. The TPI control wired to the IHC “1” & “2” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh” and when the “Pt” Priority Time parameter is set to “on”, it will prioritize the IWH without at time out period.
2.5 Two Zone Heating

Explanation:
This arrangement allows the boiler to respond to two heating demands through the IHC control and operate both circulators without priority.

- A Zone-1 thermostat wired to the OCP “TT” Terminals provides a Zone-1 heating demand and energizes the yellow system circulator wire. A Zone-2 thermostat wired to the IHC “1” and “2” terminals provides a Zone-2 demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “tt2” and the “Pt” Priority Time parameter is ignored so both circulators can run simultaneously.
2.6 Zone Valve Heating

Explanation:
This arrangement allows the boiler to respond to a space heating demand utilizing Taco 3-wire zone valves.

• The zone valve end switches wired to the OCP “TT” Terminals, provide a heating demand, and energize the yellow system circulator wire.

• CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP.
2.0 IQ Gas Boiler Control System

2.7 Zone Valve Heating, IWH w/TPI Control, 2 Circulators

Explanation:
This arrangement allows the boiler to respond to a space heating demand utilizing Taco 3-wire zone valves and a DHW demand from a TPI control.

- The zone valve end switches wired to the OCP “TT” Terminals, provide a heating demand, and energize the yellow system circulator wire. The TPI Control wired to the IHC “1” & “2” terminals provide a DHW demand and energize the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh” and when the “Plc” Priority Time parameter is set to “on” it will prioritize the IWH without a time out period.
- CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP and TPI control.
2.0 IQ Gas Boiler Control System

2.8 Zone Valve Heating, IWH w/Aquastat Control, 2 Circulators

Explanation:
This arrangement allows the boiler to respond to a space heating demand utilizing Taco 3-wire zone valves and a DHW demand from an Aquastat control.

- The zone valve end switches wired to the OCP “TT” Terminals, provide a heating demand, and energize the yellow system circulator wire. The IWH Aquastat Control wired to the IHC “1” & “2” terminals provide a DHW demand and energize the red DHW/Zone circulator wire.

- The IHC parameter “dh” must be set to “dh” and when the “Pt” Priority Time parameter is set to “on” it will prioritize the IWH without a time out period.

- CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP.
2.0 IQ Gas Boiler Control System

2.9 Zone Valve Heating, IWH w/TPI Control, 1 Circulator, No Priority

Explanation:
This arrangement allows the use of zone valves for heat and hot water using a single circulator without DHW priority.

- The heating zone valve end switches wired to the OCP “TT” Terminals, provide a heating demand, and energize the yellow system circulator wire. The TPI Control connected zone valve end switch wired to the IHC “1” & “2” terminals provide a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh”. There is no priority in this application due to using only one circulator
- Wiring the DHW zone valve end switch to the IHC will avoid the boiler temperature delayed start used on heat demand
- **CAUTION:** Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP and TPI control.

Diagram Notes:
- Zone Valve Terminal 2 must be connected to 24V AC
- Common failure to do so will result in damaged equipment
- Terminal 2 is 24V AC positive
- Terminal 3 is 24V AC ground
- Left “T” is 24V AC positive
2.0 IQ Gas Boiler Control System

2.10 Zone Valve Heating, IWH w/TPI Control, 1 Circulator, No Priority

Explanation:
This arrangement allows the use of zone valves for heat and hot water using a single circulator without DHW priority.

- The heating zone valve end switches wired to the OCP “TT” Terminals, provide a heating demand, and energizes the yellow system circulator wire. The IWH Aquastat Control connected zone valve end switch wired to the IHC “1” & “2” terminals provide a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh”. There is no priority in this application due to using only one circulator.
- Wiring the DHW zone valve end switch to the IHC will avoid the boiler temperature delayed start used on heat demand.
- CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP and IHC.
Explanation:
This application uses a zone valve control for heating demands and the DHW demand using at TPI control

- The zone control end switch wired to the OCP “TT” Terminals, provide a heating demand, and energizes the yellow system circulator wire. The TPI Control wired to the IHC “1” & “2” terminals provide a DHW demand and energizes the red DHW/Zone circulator wire.

- The IHC parameter “dh” must be set to “dh”, and when the “Pb” Priority Time parameter is set to “on”, it will prioritize the IWH without a time out period.

- **CAUTION:** Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP and TPI Control.
2.0 IQ Gas Boiler Control System

2.12 Zone Valve Control Heating, IWH w/Aquastat Control, 2 Circulators

Explanation:
This application uses a zone valve control for heating demands and the DHW demand using an Aquastat control

- The zone control end switch wired to the OCP “TT” Terminals, provide a heating demand, and energizes the yellow system circulator wire. The IWH Aquastat Control wired to the IHC “1” & “2” terminals provide a DHW demand and energizes the red DHW/Zone circulator wire.

- The IHC parameter “dh” must be set to “dh”, and when the “Pt” Priority Time parameter is set to “on”, it will prioritize the IWH without a time out period.

- CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP.
2.0 IQ Gas Boiler Control System

2.13 Zone Valve Control Heating, IWH w/TPI Control, 1 Circulator

Explanation:
This application uses a zone valve control for heating demands and the DHW demand wired directly to the IHC control utilizing one circulator. Priority is controlled by the zone valve relay control.

- The zone control end switch wired to the OCP “TT” Terminals, provide a heating demand, and energizes the yellow system circulator wire. The Zone 3 Pump end switch wired to the IHC “1” & “2” terminals provide a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh”. There is no circulator priority in this application due to using only one circulator.
- Wiring the zone valve control “zone pump 3 end switch” to DHW terminals will avoid the boiler temperature delayed start used on heat demand.
- CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the TPI Control.
Explanation:

This application uses a zone valve control for heating demands and the DHW demand wired directly to the IHC control utilizing one circulator. Priority is controlled by the zone valve relay control.

- The zone control end switch wired to the OCP “TT” Terminals, provide a heating demand, and energizes the yellow system circulator wire. The Zone 3 Pump end switch wired to the IHC “1” & “2” terminals provide a DHW demand and energizes the red DHW/Zone circulator wire.

- The IHC parameter “dh” must be set to “dh”. There is no circulator priority in this application due to using only one circulator.

- Wiring the zone valve control “zone pump 3 end switch” to DHW terminals will avoid the boiler temperature delayed start used on heat demand.

Caution: When using a zone valve on an IWH, we strongly suggest the use of a mixing valve installed on the Domestic water side of the Indirect Water Heater.
2.15 Zone Switching Relay Heating

Explanation:
This arrangement allows the boiler to respond to heating demands and control all the circulators from a zone switching relay.

- The zone control end switch wired to the OCP “TT” Terminals, provide a heating demand, and energizes the yellow system circulator wire.

![Diagram of 2.0 IQ Gas Boiler Control System](image-url)
2.16 Zone Switching Relay Heating, IWH w/TPI Control

Explanation:

This arrangement allows the boiler to respond to heating demands and control all the circulators from a Zone Switching Relay. IWH takes priority through the IHC control via the yellow system pump wire.

- The zone control end switch wired to the OCP “TT” Terminals, provide a heating demand, and energizes the yellow system circulator wire. The TPI Control wired to the IHC “1” & “2” terminals provide a DHW demand and energizes the red DHW/Zone circulator wire.

- A heat demand will energize the yellow wire which will supply voltage to the zone pumps via the “ZC” terminals on the zone relay. When the DHW demand activates, the IHC will de-energize the yellow system circulator wire and energize the red DHW circulator. When the DHW demand expires, the IHC will de-energize the red wire and re-energize the yellow wire, providing there is still a call for heat.

- The IHC parameter “dh” must be set to “dh”, and when the “Pt” Priority Time parameter is set to “on”, it will prioritize the IWH without a time out period.

- **CAUTION:** Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP and TPI Control.
2.0 IQ Gas Boiler Control System

2.17 Zone Switching Relay Heating, IWH w/Aquastat Control

Explanation:

This arrangement allows the boiler to respond to heating demands and control all the circulators from a Zone Switching Relay.

- The zone control end switch wired to the OCP “TT” Terminals, provide a heating demand, and energizes the yellow system circulator wire. The IWH Aquastat Control wired to the IHC “1” & “2” terminals provide a DHW demand and energizes the red DHW/Zone circulator wire.

- A heat demand will energize the yellow wire which will supply voltage to the zone pumps via the “ZC” terminals on the zone relay. When the DHW demand activates, the IHC will de-energize the yellow system circulator wire and energize the red DHW circulator. When the DHW demand expires, the IHC will de-energize the red wire and re-energize the yellow wire, providing there is still a call for heat.

- The IHC parameter “dh” must be set to “dh”, and when the “P_{on}” Priority Time parameter is set to “on”, it will prioritize the IWH without a time out period.
3.0 IQ Gas Boiler Control System, IQ Reset Option Card

The IQ Outdoor Reset Option Card is an auxiliary control designed specifically for all Burnham products that feature the IQ Control System.

The device then plugs into the IQ Option Panel making it the quickest, simplest way to install the energy savings and improved comfort of a full-featured outdoor reset system in any nearly heating system.

The included weatherproof outdoor temperature sensor is mounted outside the building, and a 2-wire connection is all that's required to connect the Option Card. An additional 2-wire connection to the DHW Aquastat provides a DHW demand.

The IQ Outdoor Reset Option Card contains an impressive list of features normally found only on expensive, stand-alone control systems. A simple click is all it takes to add the these great features:

- Adjustable reset ratio
- Selectable & Adjustable Temperature Boost
- Domestic Hot Water Set Point
- Selectable, Adjustable Domestic Priority
- Selectable, Adjustable Domestic Priority Protection
- Built-In Diagnostics display error codes on LED display
- Can be easily by-passed for service or diagnostics
- Settings and status is displayed on IQ Option Panel
- Adjustments made right on the boiler
3.0 IQ Gas Boiler Control System, IQ Reset Option Card

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
<th>Range</th>
<th>Factory Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Set Point</td>
<td>Set Point of Boiler</td>
<td>180°F</td>
</tr>
<tr>
<td>OT</td>
<td>Outdoor Temperature</td>
<td>Actual Temp from Sensor</td>
<td></td>
</tr>
</tbody>
</table>

IQ Outdoor Reset Option Card Settings / Defaults

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
<th>Range</th>
<th>Factory Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>dS</td>
<td>Domestic Set Point</td>
<td>Range: 150°F – 180°F</td>
<td>180°F</td>
</tr>
<tr>
<td>Pz</td>
<td>Priority Time</td>
<td>Range: 0-101 Minutes</td>
<td>0 Minutes</td>
</tr>
<tr>
<td>tb</td>
<td>Boost Time</td>
<td>Range: 0-30 Minutes</td>
<td>20 Minutes</td>
</tr>
<tr>
<td>Lo</td>
<td>Low Outdoor Temp</td>
<td>Range: 50°F – 32°F</td>
<td>0°F</td>
</tr>
<tr>
<td>Ho</td>
<td>High Outdoor Temp</td>
<td>Range: 35°F – 100°F</td>
<td>70°F</td>
</tr>
<tr>
<td>Lb</td>
<td>Low Boiler Temp</td>
<td>Range: 70°F – 180°F</td>
<td>110°F</td>
</tr>
<tr>
<td>Hb</td>
<td>High Boiler Temp</td>
<td>Range: 70°F – 220°F</td>
<td>180°F</td>
</tr>
<tr>
<td>Lt</td>
<td>Minimum Boiler Temp</td>
<td>Range: 70°F – 180°F</td>
<td>130°F</td>
</tr>
<tr>
<td>F-C</td>
<td>Display in °F or °C</td>
<td>Degrees: °F/°C</td>
<td>Degrees °F</td>
</tr>
</tbody>
</table>

Error Codes

<table>
<thead>
<tr>
<th>Error</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Err 18</td>
<td>Electronics Failure</td>
<td>Replace Card</td>
</tr>
<tr>
<td>Err 53</td>
<td>Temp Sensor Failure</td>
<td>Replace Sensor</td>
</tr>
<tr>
<td>Err 89</td>
<td>Communication Error</td>
<td>Loose wire between boiler control and option panel or card failure</td>
</tr>
</tbody>
</table>

The IQ Option Panel features a 3-digit LED, which displays status, settings, and error codes for any IQ Option Cards installed on the boiler.

- The “I” button is used to toggle between each option card.
- The “UP” and “Down” arrows are used to adjust settings when the IQ Option Panel is in the Adjust Mode.
- When all 3 buttons are held down for 3 seconds, the Option Panel will enter the Adjust Mode and an underscore will be displayed.
- If no keys are pressed, after 5 minutes the Option Panel will automatically return to the View Mode.
3.0 IQ Gas Boiler Control System, IQ Reset Option Card

Optional Control Panel – ODR Card Adjustable Mode

The optional Control Panel (OCP) has three usable slots for plug in cards. Cards can be plugged in in any order. If less than three cards are used they can be in any slot, they do not have to be in any specific order. Once the card is placed in a slot it cannot be moved to another slot without using the “Lrn” function on the OCP. If the card is moved you will receive an error code but no damage will occur to the card.

The control has three buttons used to view error codes and access the cards to view or change the parameters. If using the Outdoor Reset (ODR) card you may want to change some of the outdoor reset parameters for a more efficient operation.

If there is an IWH on the jobsite it will need to be wired to the ODR card to override the ODR feature on a call for DHW. The card will prioritize the DHW demand and you may be required or choose to change the Priority Time (Pt) the IWH will run before the heating circulators will be re-energized. A required priority time change would be if you have two circulators, one for heating and the other for DHW. The “Pt” factory default is “0” minutes, left at “0” will start both pumps wired to the boiler on a DHW demand. Starting just the DHW circulator on a DHW demand you would change the “Pt” setting from “0” to any value more than “0”. A normal range would be 20 minutes or more depending on tank size and demand.

The ODR card is located in the #2 slot on the OCP pictured above. To access the card follow the directions below;

1. Press and release the “I” button until “C2” appears on the display.
2. Press one of the Arrow buttons
3. Press and hold all three buttons at the same time until an underscore appears on the display where the bottom of the third digit would appear.
4. Press the “1” button until you see the Priority Time (Pt) parameter.
5. Press the “up arrow” button to set to desired number of minutes.
6. Press the “1” button to advance to the next parameter, this also saves the setting
7. Continue to press the “1” button until “bAc” is displayed
8. Press an arrow key to leave the parameter adjust mode.

You can stop at any parameter and make changes if needed.
3.1 Single Zone Heating

Explanation:

This arrangement can be used when an IQ Gas Boiler is connected to a single zone heating system:

- A thermostat wired to the OCP “TT” terminals provide a heating demand and energizes the yellow system circulator wire.
- The IQ Outdoor Reset Option Card will raise or lower the heating system water temperature setpoint based on measured outside air temperature.
3.0 IQ Gas Boiler Control System, IQ Reset Option Card

3.2 Single Zone Heating, IWH w/TPI Control

Explanation:
This arrangement can be used when there is a single heat zone and a DHW demand.

- A thermostat wired to the OCP “TT” terminals provide a heating demand and energizes the yellow system circulator wire. The TPI Control wired to the IQ Outdoor Reset Option Card “3” & “4” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh”
- Priority time (Pt) and DHW Setpoint can be set on the IQ Outdoor Reset Option Card.
- The IQ Outdoor Reset Option Card will raise or lower the heating system water temperature setpoint based on measured outside air temperature and will be overridden on a DHW demand.

- **CAUTION:** Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP and TPI Control.
3.0 IQ Gas Boiler Control System, IQ Reset Option Card

3.3 Single Zone Heating, IWH w/Aquastat Control

Explanation:
This arrangement can be used when there is a single heat zone and a DHW demand.

- A thermostat wired to the OCP “TT” terminals provide a heating demand and energizes the yellow system circulator wire. The IWH Aquastat Control wired to the IQ Outdoor Reset Option Card “3” & “4” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh”
- Priority time (Pt) on the ODR card must be set > “0”. See instructions on page 24.
- The IQ Outdoor Reset Option Card will raise or lower the heating system water temperature setpoint based on measured outside air temperature and will be overridden on a DHW demand.
3.0 IQ Gas Boiler Control System, IQ Reset Option Card

3.4 Zone Valves Heating, IWH w/TPI Control, 2 Circulators

Explanation:
This arrangement allows the boiler to respond to a space heating demand utilizing Taco 3-wire zone valves and a DHW demand from a TPI control.

- The zone valve end switches wired to the OCP “TT” terminals provide a heating demand and energizes the yellow system circulator wire. The TPI Control wired to the IQ Outdoor Reset Option Card “3” & “4” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.

- The IHC parameter “dh” must be set to “dh”

- Priority time (Pt) on the ODR card must be set > “0”. See instructions on page 24.

- The IQ Outdoor Reset Option Card will raise or lower the heating system water temperature setpoint based on measured outside air temperature and will be overridden on a DHW demand.

- CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP and TPI Control.
Explanation:
This arrangement allows the boiler to respond to a space heating demand utilizing Taco 3-wire zone valves and a DHW demand from an Aquastat control.

- The zone valve end switches wired to the OCP “TT” terminals provide a heating demand and energizes the yellow system circulator wire. The IWH Aquastat Control connected zone valve end switch wired to the IQ Outdoor Reset Option Card “3” & “4” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh”
- Priority time (Pe) on the ODR card must be set > “0”. See instructions on page 24.
- The IQ Outdoor Reset Option Card will raise or lower the heating system water temperature setpoint based on measured outside air temperature and will be overridden on a DHW demand.
- CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP.
3.0 IQ Gas Boiler Control System, IQ Reset Option Card

3.6 Zone Valves Heating, IWH w/TPI Control, 1 Circulator, No Priority

Explanation:
This arrangement allows the boiler to respond to a space heating demand utilizing Taco 3-wire zone valves and a DHW demand from a TPI control.

- The zone valve end switches wired to the OCP “TT” terminals provide a heating demand and energizes the yellow system circulator wire. The TPI Control connected zone valve end switch wired to the IQ Outdoor Reset Option Card “3” & “4” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh”. There is no priority in this application due to using only one circulator.
- Wiring the zone valve end switches to DHW terminals will avoid the boiler temperature delayed start used on heat demand and provides a DHW setpoint.
- The IQ Outdoor Reset Option Card will raise or lower the heating system water temperature setpoint based on measured outside air temperature and will be overridden on a DHW demand.
- CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP and the TPI control.
3.0 IQ Gas Boiler Control System, IQ Reset Option Card

3.7 Zone Valves Heating, IWH w/Aquastat Control, 1 Circulator, No Priority

Explanation:
This arrangement allows the boiler to respond to a space heating demand utilizing Taco 3-wire zone valves and a DHW demand from an Aquastat control.

- The heating zone valve end switches wired to the OCP “TT” terminals provide a heating demand and energizes the yellow system circulator wire. The IWH Aquastat Control connected zone valve end switch wired to the IQ Outdoor Reset Option Card “3” & “4” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh”. There is no priority in this application due to using only one circulator.
- Wiring the zone valve end switches to DHW terminals will avoid the boiler temperature delayed start used on heat demand and provides a DHW setpoint.
- The IQ Outdoor Reset Option Card will raise or lower the heating system water temperature setpoint based on measured outside air temperature and will be overridden on a DHW demand.
- CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP.

Caution: When using a zone valve on an IWH, we strongly suggest the use of a mixing valve installed on the domestic water side of the indirect water heater.

NOTE
Zone Valve Terminal 2 must be connected to 24V AC
Common failure to do so will result in damaged equipment.

Terminal 2 is 24V AC Positive
Terminal 3 is 24V Ground
Left “T” is 24V AC Positive

Terminal 4 is 24V AC Positive

Overcurrent Protection/Disconnect
Power Supply 120/60/1

System Circulator
DHW/Zone Circulator

120V AC Power Supply

Green
White
Black
Yellow

Boiler Junction Box
Line Voltage Wiring Connections

Service Switch (Optional)

System Circulator

IWH-Aquastat Control

Terminal 4 is 24V AC Positive

Terminal 2 is 24V AC Positive

Terminal 3 is 24V Ground

Left “T” is 24V AC Positive

L1
L2
L2

24V AC Positive
24V AC Positive

40VA Transformer Field Installed

Power Supply 120/60/1

Thermostat 1
Thermostat 2
3.8 Zone Valve Control Heating, IWH w/TPI Control, 2 Circulators

Explanation:
This arrangement allows the boiler to respond to a space heating demand utilizing a zone valve control and a DHW demand from a TPI control.

- The heating zone valve end switches wired to the OCP “TT” terminals provide a heating demand and energizes the yellow system circulator wire. The TPI Control wired to the IQ Outdoor Reset Option Card “3” & “4” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh”.
- Priority time (Pt) on the ODR card must be set > “0”. See instructions on page 24.
- The IQ Outdoor Reset Option Card will raise or lower the heating system water temperature setpoint based on measured outside air temperature and will be overridden on a DHW demand.
- CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP.
3.9 Zone Valve Control Heating, IWH Aquastat Control, 2 Circulators

Explanation:
This arrangement allows the boiler to respond to a space heating demand utilizing a zone valve control and a DHW demand from an Aquastat control.

- The heating zone valve end switches wired to the OCP “TT” terminals provide a heating demand and energizes the yellow system circulator wire. The IWH Aquastat Control wired to the IQ Outdoor Reset Option Card “3” & “4” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh”.
- Priority time (P_t) on the ODR card must be set > “0”. See instructions on page 24.
- The IQ Outdoor Reset Option Card will raise or lower the heating system water temperature setpoint based on measured outside air temperature and will be overridden on a DHW demand.
3.10 Zone Valve Control Heating, IWH w/TPI Control, 1 Circulators

Explanation:

This arrangement allows the boiler to respond to a space heating demand utilizing a zone valve control and a DHW demand from a TPI control.

- The zone control end switch wired to the OCP “TT” terminals provide a heating demand and energizes the yellow system circulator wire. The zone 3 pump end switch wired to the IQ Outdoor Reset Option Card “3” & “4” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.

- The IHC parameter “dh” must be set to “dh”. Priority time and DHW setpoint can be set on the IQ Outdoor Reset Option Card.

- Wiring the zone valve control “zone pump end switch” to DHW terminals will avoid the boiler temperature delayed start used on heat demand and provides a DHW setpoint.

- The IQ Outdoor Reset Option Card will raise or lower the heating system water temperature setpoint based on measured outside air temperature and will be overridden on a DHW demand.

- **CAUTION:** Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP and the TPI control.
3.11 Zone Valve Control Heating, IWH w/Aquastat Control, 1 Circulator

Explanation:

This arrangement allows the boiler to respond to a space heating demand utilizing a zone valve control and a DHW demand from an Aquastat control.

- The heating zone valve end switches wired to the OCP “TT” terminals provide a heating demand and energizes the yellow system circulator wire. The zone 3 pump end switch wired to the IQ Outdoor Reset Option Card “3” & “4” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.

- The IHC parameter “dh” must be set to “dh”. Priority time and DHW setpoint can be set on the IQ Outdoor Reset Option Card.

- Wiring the zone valve control “zone pump end switch” to DHW terminals will avoid the boiler temperature delayed start used on heat demand and provides a DHW setpoint.

- The IQ Outdoor Reset Option Card will raise or lower the heating system water temperature setpoint based on measured outside air temperature and will be overridden on a DHW demand.
3.12 Zone Switching Relay Heating, IWH w/TPI Control

Explanation:
This arrangement allows the boiler to respond to a space heating demand utilizing a zone switching relay and a DHW demand from a TPI control.

- The heating zone valve end switches wired to the OCP “TT” terminals provide a heating demand and energizes the yellow system circulator wire. The TPI Control wired to the IQ Outdoor Reset Option Card “3” & “4” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.

- The IHC parameter “dh” must be set to “dh”.

- Priority time (Pb) on the ODR card must be set > “0”. See instructions on page 24.

- The IQ Outdoor Reset Option Card will raise or lower the heating system water temperature setpoint based on measured outside air temperature and will be overridden on a DHW demand.

- CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP and TPI control.
3.0 IQ Gas Boiler Control System, IQ Reset Option Card

3.13 Zone Switching Relay Heating, IWH w/Aquastat Control

Explanation:
This arrangement allows the boiler to respond to a space heating demand utilizing a zone valve control and a DHW demand from an Aquastat control.

- The heating zone valve end switches wired to the OCP "TT" terminals provide a heating demand and energizes the yellow system circulator wire. The zone 3 pump end switch wired to the IQ Outdoor Reset Option Card “3” & “4” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh”.
- The Priority time (Pt) on the ODR card must be set to > “0”. See instruction on page 24.
- When the zone valve control “zone pump end switch” to DHW terminals will avoid the boiler temperature-delayed start used on heat demand and provides a DHW setpoint.
- **CAUTION**: Proper polarity must be maintained on the red and white wires to avoid possible damage to the OCP.
4.0 Intelligent Hydronic Control (IHC)

4.1 Single Zone Heating

Explanation:
This arrangement can be used when an IQ gas boiler is connected to a single zone heating system

- A thermostat wired to the IHC “TT” terminals provide a heating demand and energizes the yellow system circulator wire.

4.2 Single Zone Heating, Power Stealing Thermostat

Explanation:
This arrangement can be used when an IQ gas boiler is connected to a single zone heating system with a power stealing thermostat

- A thermostat wired to the IHC “TT” terminals provide a heating demand and energizes the yellow system circulator wire.
4.0 Intelligent Hydronic Control (IHC)

4.3 Single Zone Heating, IWH w/TPI Control

Explanation:

This arrangement can be used when there is a single heat zone and a DHW demand from a TPI control.

- The heating zone valve end switches wired to the IHC “TT” terminals provide a heating demand and energizes the yellow system circulator wire. The TPI Control wired to the IHC “1” & “2” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.

- The IHC parameter “dh” must be set to “dh” and when the “Pt” Priority Time parameter is set to “on”, it will prioritize the IWH without a time out period.

- **CAUTION:** Proper polarity must be maintained on the red and white wires to avoid possible damage to the IHC and TPI control.
4.0 Intelligent Hydronic Control (IHC)

4.4 Single Zone Heating, IWH w/TPI Control

Explanation:

This arrangement can be used when there is a single heat zone and a DHW demand from an Aquastat control.

- A thermostat wired to the IHC “TT” wires provide a heating demand and energizes the yellow system circulator wire. The IWH Aquastat Control wired to the IHC “1” & “2” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.

- The IHC parameter “dh” must be set to “dh” and when the “Pt” Priority Time parameter is set to “on”, it will prioritize the IWH without a time out period.
4.0 Intelligent Hydronic Control (IHC)

4.5 Two Zone Heating

Explanation:
This arrangement allows the boiler to respond to two heating demands through the IHC control and operate both circulators without priority

- A Zone 1 thermostat wired to the IHC “TT” wires provide a Zone 1 heating demand and energizes the yellow system circulator wire. A Zone 2 thermostat wired to the IHC “1” & “2” terminals provides a Zone 2 demand and energizes the red DHW/Zone circulator wire.

- The IHC parameter “dh” must be set to “22” and when the “Pt” Priority Time parameter is ignored so both circulators can run simultaneously.
4.0 Intelligent Hydronic Control (IHC)

4.6 Zone Valve Heating

Explanation:
This arrangement allows the boiler to respond to a space heating demand utilizing Taco 3-wire zone valves

- The zone valve end wired to the IHC “TT” wires provide a heating demand and energizes the yellow system circulator wire.
- CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the IHC
4.0 Intelligent Hydronic Control (IHC)

4.7 Zone Valve Heating, IWH w/TPI Control, 2 Circulators

Explanation:
This arrangement allows the boiler to respond to a space heating demand utilizing Taco 3-wire zone valves and a DHW demand from a TPI control.

- The zone valve end wired to the IHC “TT” wires provide a heating demand and energizes the yellow system circulator wire. The TPI Control wired to the IHC “1” & “2” terminals provides a Zone 2 demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh” and when the “Pt” Priority Time parameter is set to “on”, it will prioritize the IWH without a time out period.
- **CAUTION:** Proper polarity must be maintained on the red and white wires to avoid possible damage to the IHC and TPI control.
4.0 Intelligent Hydronic Control (IHC)

4.8 Zone Valve Heating, IWH w/Aquastat Control, 2 Circulators

Explanation:
This arrangement allows the boiler to respond to a space heating demand utilizing Taco 3-wire zone valves and a DHW demand from an Aquastat control.

- The zone valve end wired to the IHC “TT” wires provide a heating demand and energizes the yellow system circulator wire. The TPI Control wired to the IHC “1” & “2” terminals provides a Zone 2 demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh” and when the “Pt” Priority Time parameter is set to “on”, it will prioritize the IWH without a time out period.
- CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the IHC.
4.0 Intelligent Hydronic Control (IHC)

4.9 Zone Valve Heating, IWH w/TPI Control, 1 Circulator, No Priority

Explanation:

This arrangement allows the boiler to respond to a space heating demand utilizing Taco 3-wire zone valves and a DHW demand from a TPI control.

- The zone valve end wired to the IHC "TT" wires provide a heating demand and energizes the yellow system circulator wire. The TPI Control connected zone valve end switch wired to the IHC "1" & "2" terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter "<i>dh</i>" must be set to "<i>dh</i>" and when the "<i>Pt</i>". There is no priority in this application due to using only one circulator.
- **CAUTION:** Proper polarity must be maintained on the red and white wires to avoid possible damage to the IHC and TPI control.
4.0 Intelligent Hydronic Control (IHC)

4.10 Zone Valve Heating, IWH w/Aquastat Control, 1 Circulator, No Priority

Explanation:
This arrangement allows the boiler to respond to a space heating demand utilizing Taco 3-wire zone valves and a DHW demand from an Aquastat control.

- The heating zone valve end wired to the IHC “TT” wires provide a heating demand and energizes the yellow system circulator wire. The IWH Aquastat Control connected zone valve end switch wired to the IHC “1” & “2” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh” and when the “Pt”. There is no priority in this application due to using only one circulator.
- Wiring the DHW zone valve end switch to the IHC will avoid the boiler temperature delayed start used on heat demand.
- CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the IHC and TPI control.
4.0 Intelligent Hydronic Control (IHC)

4.11 Zone Valve Control Heating, IWH w/TPI Control, 2 Circulators

Explanation:
This application uses a zone valve control for heating demands and the DHW demand wired directly to the IHC control utilizing two circulators, and offers priority.

- The zone valve end wired to the IHC “TT” wires provide a heating demand and energizes the yellow system circulator wire. The TPI Control wired to the IHC “1” & “2” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.

- The IHC parameter “dh” must be set to “dh” and when the “Pt” Priority Time parameter is set to “on”, it will prioritize the IWH without a time out period.

- **CAUTION:** Proper polarity must be maintained on the red and white wires to avoid possible damage to the IHC and TPI control.
4.0 Intelligent Hydronic Control (IHC)

4.12 Zone Valve Control Heating, IWH w/Aquastat Control, 2 Circulators

Explanation:
This application uses a zone valve control for heating demands and the DHW demand wired directly to the IHC control utilizing an Aquastat.

- The zone control end switch wired to the IHC “TT” wires provide a heating demand and energizes the yellow system circulator wire. The TPI Control wired to the IHC “1” & “2” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh” and when the “Pt” Priority Time parameter is set to “on”, it will prioritize the IWH without a time out period.
- CAUTION: Proper polarity must be maintained on the red and white wires to avoid possible damage to the IHC control.
4.13 Zone Valve Control Heating, IWH w/TPI Control, 1 Circulator

Explanation:
This application uses a zone valve control for heating demands and the DHW demand wired directly to the IHC control utilizing one circulator. Priority is controlled by the zone valve relay control.

- The zone control end switch wired to the IHC “TT” wires provide a heating demand and energizes the yellow system circulator wire. The TPI Control wired to the IHC “1” & “2” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.
- The IHC parameter “dh” must be set to “dh”. There is no circulator priority in this application due to using only one circulator.
- Wiring the zone valve control “zone pump 3 end switch” to DHW terminals will avoid the boiler temperature delayed start used on heat demand.
- **CAUTION:** Proper polarity must be maintained on the red and white wires to avoid possible damage to the TPI control.
4.0 Intelligent Hydronic Control (IHC)

4.14 Zone Valve Control Heating, IWH w/Aquastat Control, 1 Circulator

Explanation:

This application uses a zone valve control for heating demands and the DHW demand wired directly to the IHC control utilizing one circulator. Priority is controlled by the zone valve relay control.

- The zone control end switch wired to the IHC “TT” wires provide a heating demand and energizes the yellow system circulator wire. The TPI Control wired to the IHC “1” & “2” terminals provides a DHW demand and energizes the red DHW/Zone circulator wire.

- The IHC parameter “dh” must be set to “dh”. There is no circulator priority in this application due to using only one circulator.

- Wiring the zone valve control “zone pump 3 end switch” to DHW terminals will avoid the boiler temperature delayed start used on heat demand.

Caution: When using a zone valve on an IWH, we strongly suggest the use of a mixing valve installed on the Domestic water side of the Indirect Water Heater.
4.15 Zone Switching Relay Heating

Explanation:
This arrangement allows the boiler to respond to heating demands and control all the circulators from a zone switching relay.

- The zone switching relay end switch wired to the IHC “TT” wires provides a heating demand and energizes the yellow system circulator wire.
4.16 Zone Switching Relay Heating, IWH w/TPI Control

Explanation:

This arrangement allows the boiler to respond to heating demands and control all the circulators from a zone switching relay. DHW is controlled by the TPI control.

- The zone switching relay end switch wired to the IHC “TT” wires provides a heating demand and energizes the yellow system circulator wire. The TPI Control wired to the IHC “1” & “2” terminals provide a DHW demand and energizes the red DHW/Zone circulator wire.

- A heat demand will energize the yellow wire which will supply voltage to the zone pumps via the “ZC” terminals on the zone relay. When the DHW demand activates, the IHC will de-energize the yellow system circulator wire and energize the red DHW circulator. When the DHW demand expires, the IHC will de-energize the red wire and re-energize the yellow wire providing there is still a call for heat.

- The IHC parameter “\(dh\)” must be set to “\(dh\)” and when the “\(Pt\)” Priority Time parameter is set to “on”, it will prioritize the IWH without a time out period.

- **CAUTION:** Proper polarity must be maintained on the red and white wires to avoid damage to the IHC and TPI control.
4.0 Intelligent Hydronic Control (IHC)

4.17 Zone Switching Relay Heating, IWH w/Aquastat Control

Explanation:
This arrangement allows the boiler to respond to heating demands and control all the circulators from a zone switching relay. DHW is controlled by an Aquastat control.

- The zone switching relay end switch wired to the IHC “TT” wires provides a heating demand and energizes the yellow system circulator wire. The IWH Aquastat Control wired to the IHC “1” & “2” terminals provide a DHW demand and energizes the red DHW/Zone circulator wire.

- A heat demand will energize the yellow wire which will supply voltage to the zone pumps via the “ZC” terminals on the zone relay. When the DHW demand activates, the IHC will de-energize the yellow system circulator wire and energize the red DHW circulator. When the DHW demand expires, the IHC will de-energize the red wire and re-energize the yellow wire providing there is still a call for heat.

- The IHC parameter “dh” must be set to “dh” and when the “PT” Priority Time parameter is set to “on”, it will prioritize the IWH without a time out period.
NOTES